Migration testing approaches for adhesives

André Weiss, Manager Instrumental Analytics, Food Safety, Henkel
1. Legal Background / Risk Assessment

1.1 Framework Regulation

- Article 3
- Materials and articles [...] shall be manufactured in compliance with good manufacturing practice so that, under normal and foreseeable conditions of use, they do not transfer their constituents to food in quantities which could:
 - endanger human health
 - bring about an unacceptable change in the composition of the food
 - bring about a deterioration in the organoleptic characteristics thereof

- Rationale for risk assessment
1. Legal Background / Risk Assessment

1.2 Risk Assessment

- Evaluation of adhesives via risk management

 \[
 \text{Risk} = \text{Exposure} \times \text{Hazard}
 \]

- Substance transfer from adhesive into foodstuff has to be evaluated:

 - Exposure via worst-case calculation, migration modelling, analytical tests

 - Hazard via toxicological assessments
1. Legal Background / Risk Assessment

1.2 Risk Assessment

- Evaluation of adhesives via risk management

\[
\text{Risk} = \text{Exposure} \times \text{Hazard}
\]

- Substance transfer from adhesive into foodstuff has to be evaluated:
 - Exposure via worst-case \textit{calculation}, migration \textit{modelling}, \textit{analytical} tests
 - Hazard via \textit{toxicological} assessments
1. Legal Background / Risk Assessment

1.3 Worst-case calculation

- Calculate maximum transfer of substances
- Critical parameters must be known
 - Amount of substance in the adhesive
 - Amount of adhesive used in the packaging material
 - Ratio of packaging material to packed food
- Assume 100% transfer

+ Easy and fast, no chemical analysis required
- Difficult for reactive systems, difficult for gas phase transfer
- No unknown components
1. Legal Background / Risk Assessment

1.4 Migration Modelling

- Evaluate transfer via computer simulation
- Critical parameters must be known
 - Basic parameters (concentration, O:V ratio)
 - Layer thickness
 - Storage conditions

+ More realistic than worst-case calculation
+ No chemical analysis required
- No unknown components

Example: LDPE, Migration: 10d @ 60°C, MW 501-750 g/mol
1. Legal Background / Risk Assessment

1.5 Extraction

- Extraction under severe conditions
 - Organic solvent
 - Elevated temperature

- Analysis of extract

 - Unknown components
 - Results overestimate real migration
 - Chemical analysis required
1. Legal Background / Risk Assessment

1.6 Migration studies

- Migration under defined conditions
- Parameters to be known
 - Storage conditions
 - Type of foodstuff
- Analysis of migration solution

+ Most realistic results
+ Unknown components
- Time consuming
1. Legal Background / Risk Assessment

1.7 Plastics Regulation

- Migration testing conditions described in detail
- Often referred to as migration testing conditions for all FCM
- Only applicable for plastic materials and articles (including plastic layers in multi-material multi-layer materials)
 - Adhesives are not within the scope of the Plastics Regulation
 - JRC Technical guidelines for compliance testing: “[...] only applicable to plastic materials and articles [...]”
- Other approaches needed for non plastics!
1. Legal Background / Risk Assessment

1.8 Migration testing for non plastics

- Migration testing guidelines for non plastics
- FEICA guidance paper “Migration testing of adhesives intended for food contact materials”, 27 May 2016
 - Typical adhesive systems in food contact application
 - Material-specific properties to be considered
 - Test procedures and evaluation of test results
 - Analytical challenges
2. Approaches for adhesive testing

2.1 Overview

- Wide range of applications, complex chemistry

<table>
<thead>
<tr>
<th>Polyurethane adhesives</th>
<th>Adhesives based on natural polymers</th>
<th>Dispersions/emulsions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coldseals</td>
<td>Heatseals</td>
<td>Hotmelts</td>
</tr>
</tbody>
</table>
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- Laminating adhesive, e.g. for flexible packaging
- Plastic multi-layer materials are subject to Plastics Regulation
 - Migration testing according to Regulation (EU) 10/2011
- Direct testing not possible (reactive adhesive system)
- Tests on final structure or model systems
 - Expected application (filling good, storage conditions)
 - Correct curing conditions
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- Monolayers should be tested separately
 - Distinguishing between migration of adhesive and monolayer compounds

- Example
 - Polyolefin Oligomeric Saturated Hydrocarbons (POSH) from CPP monolayer
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- False-positive results/analytical artefacts
 - Primary aromatic amines (PAA) via photometric method
 - Sum parameter

![Diagram of chemical reactions involving MDI, MDA, TDI, and TDA](image)
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- False-positive results/analytical artefacts
 - PAA via specific HPLC method
 - Retention time and UV spectrum allow for unequivocal assignment
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- False-positive results/analytical artefacts
 - PAA: Comparison between photometric and HPLC method
 - Example
 - CPP monolayer, 3% acetic acid, retort conditions
 - Photometric: >> 10 µg/kg
 - HPLC: not detectable
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- False-positive results/analytical artefacts
 - Example
 - Free isocyanate monomers in a 3 week old laminate
 - Reason
 - Migration of (pre)polymers
 - High GC injector temperature may cause breakdown of polymers
 - Formation of free isocyanates and diols/diacids
 - Solution
 - Analytical alternatives (e.g. LC-MS)
 - Correlation between injection temperature and detected monomer content?
2. Approaches for adhesive testing

2.2 Polyurethane adhesives

- **False-negative results**
 - Reaction of isocyanates with food simulants
 - 3% acetic acid: PAA formation
 - Ethanol: urethane formation
 - Vegetable oil: amide formation
 - **Solution**
 - Determination of reaction products
 - Determination of free isocyanates after extraction with an inert solvent
2. Approaches for adhesive testing

2.3 Choice of detector

- Example 1: PAA analysis
- Unspecific detector (photometer)
 - Easy to handle
 - Sum parameter
 - No structural information
- Specific detector (HPLC-PDA)
 - Instruments required
 - Distinguish between substances
 - No false-positives
2. Approaches for adhesive testing

2.3 Choice of detector

- Example 2: MOSH/MOAH
- Unspecific detector (LC-GC-FID)
 - Proper quantification
 - Sum parameter
 - No structural information
- Specific detector (GCxGC-MS)
 - Technical expertise required
 - Structural information
 - Distinguish between MOAH and other hydrocarbons
2. Approaches for adhesive testing

2.4 Adhesives other than polyurethane adhesives

- Dissolution of aqueous dispersions and hotmelts in liquid simulants
 - Predominant use of liquid simulants according to Plastics Regulation
 - Liquid simulants may re-dissolve the adhesive
 - Extraction rather than migration (worst case)

- High temperature during migration
 - Softening point < 60°C

- Change of physical properties

- EVA based adhesive
 - 95% ethanol

- Hotmelt
 - 40°C
 - 60°C
2. Approaches for adhesive testing

2.4 Adhesives other than polyurethane adhesives

- **Typical applications**
 - Paper and cardboard
 - Secondary/tertiary packaging

- **Gas phase transfer**
 - Tenax
 - Stored within a distance

- **Direct contact on seams and edges**
 - Adhesive may be applied on a substrate
 - Tenax in direct contact
2. Approaches for adhesive testing

2.4 Adhesives other than polyurethane adhesives

- Typical applications
 - Paper and cardboard, secondary/tertiary packaging

- Gas phase transfer
 - Headspace analysis as a first screening tool

Adhesives contain volatile compounds. Volatile compounds evaporate at higher temperatures.
2. Approaches for adhesive testing

2.4 Adhesives other than polyurethane adhesives

- Heatseals or coldseals may be applied on a substrate and direct food contact cannot be excluded

- Example
 - Heatseal on aluminium substrate
 - Acidic foodstuff
 - Testing with 3% acetic acid
 - Physical change of substrate
 - For testing purposes, an alternative substrate should be selected (e.g. PET)
2. Approaches for adhesive testing

2.4 Adhesives other than polyurethane adhesives

- **Pressure sensitive adhesives**
 - e.g. dispersions based on acrylic polymers or hotmelts
 - Very tacky, Tenax will stick to the adhesive
 - To test direct contact (e.g. direct labelling), the PSA may be applied on a substrate with no or low barrier properties (paper, thin PE)
 - Migration through substrate, Tenax can be removed easily

![Diagram of Tenax, Paper/PE, Adhesive, and Substrate]
3. Summary

- Wide range of applications, complex chemistry of adhesives
- Migration conditions of Regulation (EU) 10/2011 only apply to plastic materials, other approaches are needed for adhesives
- All layers of the FCM should be tested
- False-positives and false-negatives should be considered
- Dissolution of adhesives in liquid food simulants
- Tenax as suitable alternative
- In case of doubt the real application has to be tested